Chapter 6

Linkage Analysis and Mapping

- Three point crosses
 - mapping
 - strategy
 - examples

Mapping human genes

Three point crosses

- Faster and more accurate way to map genes
- Simultaneous analysis of three markers
- Information on the position of three genes relative to each other can be obtained from one mating rather than two independent matings.
 - Example: Drosophila autosomal genes:
 - vg = vestigial wings; vg+ = normal
 - b = black body; b+ = normal body
 - pr = purple eyes; pr+ = normal eyes
- Cross of pure breeding vestigial winged, black bodied, purple eyed female to a pure breeding wild type male:
 - vgvg bb prpr × vg+vg+ b+b+ pr+pr+

Three Factor Testcrosses Result in Eight Phenotypic Progeny Classes

Types of Gametes

Parental and Recombinant Gametes Derived from Three-Point Crosses

- Parental Types
- Single Crossover between A & B/a & b
- Single Crossover between B & C/b & C
- Double Crossover

Data Analysis

- There are eight gametes from the F1
 - largest number is parental
 - smallest number is double crossover
- Identify the parental and recombinants
 - Two genes at a time.
 - Compare recombinant to parental
 - Double crossover change (oddball) is guy in the middle
- Write order of genes
- The orientation from left to right is purely arbitrary.

Data Analysis

- There are eight gametes from the F1
 - largest number is parental (P)
 - smallest number is double crossover (DCO)
- Identify the parental and recombinants
 - Two genes at a time.
 - Compare recombinant to parental
 - Double crossover change (oddball) is guy in the middle
 - Compare DCO to P
 - 2 genes should be the same,
 - one should be the opposite.
 - Check both to check yourself
 - Write order of genes
- vg pr b
 - The orientation from left to right is purely arbitrary.

© Ti	e McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
(2)	A 3-point cross				
P	φ vg b pr/vg b pr $\times \sigma$ vg ⁺ b ⁺ pr ⁺ /vg ⁺ b ⁺ pr ⁺				
F1 (all identical)	vg b pr / vg+ b+ pr+				
Test cross	♀ vg b pr/vg+b+pr+ × ♂ [*] vg b pr/vg b pr				
Test cross progeny (b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
-	12.3 m.u. 6.4 m.u. = 18.7 m.u.				

Find the **double recombinant** class (the class with the least number of progeny) -- the gene that is different from the parental chromosome in this class is the middle gene.

Data Analysis

- There are eight gametes from the F1
 - largest number is parental (P)
 - smallest number is double crossover (DCO)
- Identify the parental and recombinants
 - Two genes at a time.
 - Compare recombinant to parental
 - Double crossover change (oddball) is guy in the middle
 - Compare DCO to P
 - 2 genes should be the same,
 - one should be the opposite. (the oddball)
 - Check both to check yourself
 - Write order of genes
- vg pr b
 - The orientation from left to right is purely arbitrary.
- Now determine which numbers go to which genes.
 - Find the numbers where the "vg" is the oddball and others are same
 - These are numbers for vg to pr region. (252 and 241)

Analyzing the results of a three point cross

Look at two genes at a time and compare to parental

8/39

Analyzing the results of a three point cross

- Look at two genes at a time •
- and compare to parental •
 - Vg pr b
 - Vg+ pr+ b+
- b-pr recombinants are:
 - Vg+ b pr⁺
 - Vg b⁺- pr
- Numbers that correspond are (*)
 - $131+118+13+9 = 0.064 \times 100 = 6.4$ 4197

DSS rg* b* pr* / vg* b* pr*				
rg* b* pr* / vg* b* pr*				
r+				
* vg b pr / vg+ b+ pr+				
ı b pr / vg b pr				
al combinations for e genes binants for vg relative to al combinations for b and pr binants for b relative to al combinations for vg and pr binants for pr relative to al combinations for vg and b				
Þ				
.u. = 18.7 m.u.				

	va	pr	b		va	pr	b*
	vg+	pr+	b+	\rightarrow	vg*	pr*	b
	vg*	pr+	b+		vg⁺	pr+	<i>b</i> +

Analyzing the results of a three point cross

- Look at two genes at a time and compare to parental
 - vg and b
- vg-b recombinants are:
 - vg-b+
 - vg*-b
 - This checks to be sure you have
 - the correct middle gene also.
 - Should be the largest distance
- Numbers that correspond are

 $\frac{252 + 241 + 131 + 118 + 13 + 13 + 9 + 9}{4197} X 100 = 18.7 m.u.$

• Why count dco twice?

Double Crossovers

- Recombination is caused by formation of chiasmata along the chromosome at multiple points.
- If the distance between two genes is large enough, there can potentially be multiple chiasmata formation between them;
 - so there could be multiple crossovers.
- What would happen if there were two crossovers between the two outside genes (in this case *vg* and *b*)?
 - Answer: there would appear to be fewer recombinants between the two genes:
 - it would appear as if the genes are closer;
 - the calculated map distance between these genes will be less than actual.

Two recombination events occurred in the interval between a and b.

•We must count them for each of the single crossover events.

•They are crossing over events that occur on both sides.

•Must be used twice in calculations

➤We need to add the number of double recombinants **TWICE** to our total for the outside markers:

<u>252 + 241 + 131 + 118 + **13 + 9 + 13 +9**</u> x 100 = **18.7** m.u. 4197

Question

- Which type of class would you expect to account for the lowest frequency?
- 1) Parental
- 2) Single Recombinants
- 3) Double Recombinants
- 4) Middle class

Do Genetic and Physical maps correspond?

- Order of genes in correctly predicted by physical maps
- Distance between genes is not always similar to physical maps
 - Double, triple, and more crossovers
 - Only 50% recombination frequency observable in a cross
 - Variation across chromosome in rate of recombination
- Mapping functions compensate for inaccuracies, but are often imprecise.
- In addition, a process called Interference may occur.

Interference: The number of double crossovers may be less than expected

- Sometimes the number of observable double crossovers is less than expected if the two exchanges are not independent
 - Occurrence of one crossover reduces likelihood that another crossover will occur in adjacent parts of the chromosome
 - Chromosomal interference -
 - crossovers do not occur independently
 - Interference is not uniform among chromosomes or even within a chromosome

Interference

• The product rule allows us to predict the likelihood of a double crossover from the individual probabilities of each single crossover

Interference

- Therefore, we would expect 33 offspring to be produced as a result of a double crossover
 - However, the observed number was only 22!
- This lower-than-expected value is due to a common genetic phenomenon, termed interference
 - The first crossover decreases the probability that a second crossover will occur nearby

Measuring interference

- Coefficient of coincidence =
 - ratio between actual or observed dco and expected dco
- coefficient of coincidence :
 - = observed dco / expected dco
- Interference = 1 coefficient of coincidence

p(crossover in region 1) X p(crossover in region 2) = .123 X .064 = .0078

from a total of 4197 progeny, we should have seen (**expect**) .0078 x 4197 = 32.7 or about 33 double recombinants

1779	vg	b	pr
1654	vg+	b+	pr+
252	vg+	b	pr
241	vg	b+	pr+
131	vg+	b	pr+
118	vg	b+	pr
13	vg	b	pr+
9	vg+	b+	pr
4197			

$$I = 1 - C of C$$

$$I = 1 - \frac{\text{Observed # DCO}}{\text{Expected # DCO}}$$

$$I = 1 - \frac{13 + 9}{33} = 0.333 \text{ or } 33.3\%$$

• This suggests that a cross over in one gene interval physically inhibited a crossover in adjacent regions by 33.3%.

Question

A plant heterozygous for three dominant traits N, T, and U is test crossed, the resulting progeny are as follows:

Ν	U	Т	2
n	u	Т	70
Ν	u	Т	21
n	u	t	4
Ν	U	t	82
n	U	t	21
n	U	Т	13
Ν	u	t	17

What is the linkage arrangement of the N, U and T alleles in the parental?

What is the linkage arrangement of the N, U and T alleles in the dco?

Which gene is in the middle?

- 1) N
- 2) U 3) T

Three Point Cross -- Example where order is not known: start with 2 pure breeding strains, F1 test crossed.

Testcross offspring

progeny phenotype	<u>number</u>
+++	6
r++	359
rs+	98
rsw	4
r+w	47
+S+	43
+SW	351
++W	92

Testcross offspring_

<u>phenotype</u>	<u>number</u>
+++	6
r++	359
rs+	98
rsw	4
r+w	47
+S+	43
+SW	351
++W	92

largest class:	r++	359
largest class.	+sw	351
smallast alass:	+++	6
Smallest Class.	rsw	4

Order: determine an order where it takes two cross-overs to go from parentals to DCO.

S	r	W	
W	r	S	

The order of three markers is: s-r-w or w-r-s

Next, sort according to reciprocal products and determine where crossovers occur:

Recent Advances in the Field

Fluorescent *in situ* hybridization can also be used to localize cloned genes to a particular chromosome.

Probe for a specific gene

Visualized with chromosome specific probes

Homework Problems

Chapter 6

19, 20, 21, 22, 23, 24, 27

DON'T forget to take the online QUIZ!!
DON'T forget to submit the online iActivity
"Tomato"