Chapter 6
Linkage Analysis and Mapping

Three point crosses

- mapping
- strategy
- examples
> Mapping human genes

Three point crosses

- Faster and more accurate way to map genes
- Simultaneous analysis of three markers
- Information on the position of three genes relative to each other can be obtained from one mating rather than two independent matings.
- Example: Drosophila autosomal genes:
- $v g=$ vestigial wings; $v g+=$ normal
- $b=$ black body; $b+=$ normal body
- $p r=$ purple eyes; $p r+=$ normal eyes
- Cross of pure breeding vestigial winged, black bodied, purple eyed female to a pure breeding wild type male:
- vgvg bb prpr \times vg+vg+ b+b+ pr+pr+

Three Factor Testcrosses Result in Eight Phenotypic Progeny Classes

Types of Gametes

Parental and Recombinant Gametes Derived from Three-Point Crosses

- Parental Types
- Single Crossover between $A \& B / a \& b$
- Single Crossover between B \& C/b \& C
- Double Crossover

Data Analysis

- There are eight gametes from the F1
- largest number is parental
- smallest number is double crossover
- Identify the parental and recombinants
- Two genes at a time.
- Compare recombinant to parental

Test cross
Test cross progeny
(b)

- Double crossover change (oddball) is guy in the middle
- Write order of genes
- The orientation from left to right is purely arbitrary.
- What the hell are you talking about??????????????????????????????

Data Analysis

- There are eight gametes from the F1
- largest number is parental (P)
- smallest number is double crossover (DCO)
- Identify the parental and recombinants
- Two genes at a time.
- Compare recombinant to parental
- Double crossover change (oddball) is guy in the middle
- Compare DCO to P
- 2 genes should be the same,
- one should be the opposite.
- Check both to check yourself
- Write order of genes
- $v g-p r-b$
- The orientation from left to right is purely arbitrary.
- What the hell are you talking about?????????????????????????????? ${ }_{5 / 39}$

Find the double recombinant class (the class with the least number of progeny) -- the gene that is different from the parental chromosome in this class is the middle gene.

 cross over

Data Analysis

- There are eight gametes from the F1
- largest number is parental (P)
- smallest number is double crossover (DCO)
- Identify the parental and recombinants
- Two genes at a time.
- Compare recombinant to parental
- Double crossover change (oddball) is guy in the middle
- Compare DCO to P
- 2 genes should be the same,
- one should be the opposite. (the oddball)

- Check both to check yourself
- Write order of genes
- $v g-p r-b$
- The orientation from left to right is purely arbitrary.
- Now determine which numbers go to which genes.
- Find the numbers where the "vg" is the oddball and others are same
- These are numbers for vg to pr region. (252 and 241)
- What the hell are you talking about??????????????????????????

Analyzing the results of a three point cross

- Look at two genes at a time and compare to parental
- vg and pr
- vg-pr parentals are:
- vg-pr-b
- vg+ - pr+ - b+
- vg-pr recombinants are:
- vg+-pr-b
- vg-pr+-b
- Numbers that correspond are
(b)
${ }^{(a)}$
P
Test cross

Test cross progeny

(a) Parental chromosomes

(b)

Analyzing the results of a three point cross

- Look at two genes at a time
- and compare to parental
- Vg-pr-b
- Vg+-pr+-b+
- b-pr recombinants are:
- Vg+ - b-pr
- Vg-b+-pr
- Numbers that correspond are
$\left(\begin{array}{l}\text { (a) } \\ \mathrm{P}\end{array}\right.$
F_{1} (all identical)
Test cross
Test cross progeny

Oqvgbpr/vg	+ ${ }^{+} \boldsymbol{p r}{ }^{+} \times$	$O^{7} v g b p r / v g b p r$
1779	$v g \boldsymbol{b} \boldsymbol{p r}$	Parental combinations for
1654	$\boldsymbol{v g}^{+} \boldsymbol{b}^{+} \mathrm{pr}^{+}$	all three genes
252	$\boldsymbol{v g}{ }^{+} \boldsymbol{b}$ pr	Recombinants for vg relative to
241	$\boldsymbol{v g} \mathrm{b}^{+} \boldsymbol{p r}{ }^{+}$	parental combinations for b and pr
131	$\boldsymbol{v g}^{+} \mathrm{b}^{\text {pr}} \mathrm{pr}^{+}$	Recombinants for b relative to
118	$\boldsymbol{v g} \mathrm{b}^{+} \boldsymbol{p r}$	parental combinations for vg and pr
13	$\boldsymbol{v g} \boldsymbol{b} \mathrm{pr}^{+}$	Recombinants for pr relative to
9	$\boldsymbol{v} \boldsymbol{g}^{+} b^{+} p r$	parental combinations for $v g$ and b

- $131+118+13+9=0.064 \times 100=6.4 \mathrm{mu}$ 4197

A 3-point cross

(c)

Analyzing the results of a three point cross

- Look at two genes at a time and compare to parental
- vg and b
- vg-b recombinants are:
- vg-b+
- $v g^{+}-b$
- This checks to be sure you have
- the correct middle gene also.

- Numbers that correspond are

$$
\frac{252+241+131+118+13+13+9+9}{4197} \times 100=18.7 \mathrm{~m} . \mathrm{u} .
$$

- Why count dco twice?
(b) Deduced genetic map

$$
\begin{array}{rlll}
\text { WRONG Without dco } \longrightarrow & v g-b \text { dist } & \frac{252+241+131+118}{4197} & \times 100=17.7 \mathrm{~m} . \mathrm{u} . \\
& v g-p r \text { dist } & \frac{252+241+13+9}{4197} & \times 100=12.3 \mathrm{~m} . \mathrm{u} . \\
& b-p r \text { dist } & \frac{131+118+13+9}{4197} & \times 100=6.4 \mathrm{~m} . \mathrm{u} .
\end{array}
$$

$17.7 \mathrm{~m} . \mathrm{u}$. is not $18.7 \mathrm{~m} . \mathrm{u} .!!!!!!$

Double Crossovers

- Recombination is caused by formation of chiasmata along the chromosome at multiple points.
- If the distance between two genes is large enough, there can potentially be multiple chiasmata formation between them:
- so there could be multiple crossovers.
- What would happen if there were two crossovers between the two outside genes (in this case vg and b)?
- Answer: there would appear to be fewer recombinants between the two genes:
- it would appear as if the genes are closer:
- the calculated map distance between these genes will be less than actual.
(b) Deduced genetic map

$>$ We need to add the number of double recombinants TWICE to our total for the outside markers:
vg-b distance...

1779	vg b pr
1654	$v g^{+} b^{+} p r^{+}$
252	$v g^{+} b$ pr
241	$v g b^{+} p r^{+}$
131	$v g^{+} b^{p r} r^{+}$
118	$v g b^{+} p r$
13	$v g$ b pr^{+}
9	$v g^{+} b^{+} p r$

$\frac{252+241+131+118+13+9+13+9}{4197} \times 100=18.7$ m.u.

Question

- Which type of class would you expect to account for the lowest frequency?

1) Parental
2) Single Recombinants
3) Double Recombinants
4) Middle class

Do Genetic and Physical maps correspond?

- Order of genes in correctly predicted by physical maps
- Distance between genes is not always similar to physical maps
- Double, triple, and more crossovers
- Only 50\% recombination frequency observable in a cross
- Variation across chromosome in rate of recombination
- Mapping functions compensate for inaccuracies, but are often imprecise.
- In addition, a process called Interference may occur.

Interference: The number of double crossovers may be less than expected

- Sometimes the number of observable double crossovers is less than expected if the two exchanges are not independent
- Occurrence of one crossover reduces likelihood that another crossover will occur in adjacent parts of the chromosome
- Chromosomal interference -
- crossovers do not occur independently
- Interference is not uniform among chromosomes or even within a chromosome

Interference

- The product rule allows us to predict the likelihood of a double crossover from the individual probabilities of each single crossover

Expected

(double crossover)	$=$	(single crossover)
0.00787	$=$	0.064

Probability

(single crossover)
X
0.123

- If we analyzed a total of
- 4197 fly offspring
- The expected number
- of double crossover offspring is
$=4197 \times 0.00787=33$
- Observed number is 22

Interference

- Therefore, we would expect 33 offspring to be produced as a result of a double crossover
- However, the observed number was only 22 !
- This lower-than-expected value is due to a common genetic phenomenon, termed interference
- The first crossover decreases the probability that a second crossover will occur nearby

Measuring interference

- Coefficient of coincidence =
- ratio between actual or observed dco and expected dco
- coefficient of coincidence :
= observed dco / expected dco
- Interference = 1 - coefficient of coincidence
$p($ crossover in region 1$) \times p($ crossover in region 2$)=$

$$
.123 \times .064=.0078
$$

from a total of 4197 progeny, we should have seen (expect) $.0078 \times 4197=32.7$ or about 33 double recombinants

1779	$v g$	b	$p r$
1654	$v g+$	$b+$	$p r+$
252	$v g+$	b	$p r$
241	$v g$	$b+$	$p r+$
131	$v g+$	b	$p r+$
118	$v g$	$b+$	$p r$
13	$v g$	b	$p r+$
$\frac{9}{4197}$	$v g+$	$b+$	$p r$

$$
I=1-C \text { of } C
$$

$$
\mathrm{I}=1-\frac{\text { Observed \# DCO }}{\text { Expected \# DCO }}
$$

$$
\mathrm{I}=1-\frac{13+9}{33}=0.333 \text { or } 33.3 \%
$$

- This suggests that a cross over in one gene interval physically inhibited a crossover in adjacent regions by 33.3%.

Question

A plant heterozygous for three dominant traits N, T, and U is test crossed, the resulting progeny are as follows:

N	U	T	2
n	u	T	70
N	u	T	21
n	u	t	4
N	U	t	82
n	U	t	21
n	U	T	13
N	u	t	17

What is the linkage arrangement of the N, U and T alleles in the parental?

What is the linkage arrangement of the N, U and T alleles in the dco?

Which gene is in the middle?

1) N
2) U
3) T

Three Point Cross -- Example where order is not known: start with 2 pure breeding strains, F1 test crossed.

Testcross offspring

progeny phenotype		number
+++	6	
r++	359	
rs+	98	
rsw	4	
r+w	47	
+s+	43	
+sw	351	
++w	92	

Testcross phenotype	offspring_ number	largest class:	r++	359
+++	6	largest class:	+sw	351
r++	359			
rs+	98		+++	6
rsw	4	smallest class:	rsw	4
r+w	47			
+s+	43			
+sw	351			
++w	92	Order: determine where it takes two go from parentals		

S	r	W

W	r	S

The order of three markers is: s-r-w or w-r-s
$>$ Next, sort according to reciprocal products and determine where crossovers occur:

F2 products

map distance $s-r=\frac{98+92+6+4}{1000}=0.20=20 \mathrm{~m} . \mathrm{u}$.
map distance r-w $=\frac{47+43+6+4}{1000}=0.10=10 \mathrm{~m} . \mathrm{u}$.

Recent Advances in the Field

Fluorescent in situ hybridization can also be used to localize cloned genes to a particular chromosome.

Probe for a specific gene

Visualized with chromosome specific probes

Homework Problems

Chapter 6
\# 19, 20, 21, 22, 23, 24, 27

■DON'T forget to take the online QUIZ!!
$\square D O N$ 'T forget to submit the online iActivity ■Tomato"

